Effects of Water Vapor Condensation on the Performance of Supersonic Flow Chemical Oxygen-Iodine Laser
スポンサーリンク
概要
- 論文の詳細を見る
Water vapor is produced in the singlet oxygen generator of a supersonic flow chemical oxygen-iodine laser as an undesirable by-product. Since the water vapor deactivates the excited iodine atoms very efficiently, it is removed using a water vapor trap before the singlet oxygen is mixed with the iodine. However, part of the water vapor passes through the trap, mixes with the iodine and expands through the supersonic nozzle. In the present study, a condensation model is proposed and the effect of the water vapor condensation due to the supersonic expansion is simulated numerically assuming that the mixing takes place instantaneously and the flow is one-dimensional. The condensation causes a reduction in water vapor concentration and, in this respect, the deactivation of the excited iodine atoms is suppressed. However, the latent heat released into the flow greatly suppresses the cooling in the supersonic expansion. As a result, the small signal gain coefficient is lowered considerably. However, the scattering and the absorption of the laser beam by the water droplets are negligibly small compared to the amplification.
- 一般社団法人日本機械学会の論文
- 1996-05-15
著者
-
Yamada Hirokazu
Tokyo Metropolitan College Of Aeronautical Engineering
-
Masuda Wataru
Faculty Of Engineering Nagaoka University Of Technology
-
SATOH Miyako
Faculty of Engineering, Nagaoka University of Technology
-
Satoh Miyako
Faculty Of Engineering Nagaoka University Of Technology
関連論文
- Effects of Injection of Various Gases on the Gain Characteristics of a Supersonic Flow CO Chemical Laser
- Numerical Simulation of Supersonic Flow CO Chemical Laser Solving Navier-Stokes Equations
- Effects of Nozzle Contour on the Aerodynamic Characteristics of Underexpanded Annular Impinging Jets
- Effects of Water Vapor Condensation on the Performance of Supersonic Flow Chemical Oxygen-Iodine Laser
- Three-Dimensional Mixing / Reacting Zone Structure in a Supersonic Flow Chemical Oxygen-Iodine Laser
- Numerical Simulation for the Power of a Supersonic Flow CO Chemical Laser Using a Leaky Stream Tube Approach
- Numerical Simulation of a Supersonic Flow Chemical Oxygen-Iodine Laser Solving Navier-Stokes Equations
- Mixing and Reacting Zone Structure in a Supersonic Mixing Chemical Oxygen-Iodine Laser with Ramp Nozzle Array
- Characteristics of Radiation from a supersonic Flow Chemical Oxygen-Iodine Laser
- Effects of Wall Catalysis on the Reacting Zone Structure of a Supersonic Flow Chemical Oxygen-Iodine Laser
- Aerodynamic Characteristics of Underexpanded Coaxial Impinging Jets
- Numerical Analysis for the Power of a Supersonic Flow CO Chemical Laser
- Characteristics of Radiation from a Q-Switched Supersonic Flow Chemical Oxygen-Iodine Laser
- Numerical Analysis on the Reaction Zone Structure of a Supersonic Flow CO Chemical Laser
- Investigation on the Theoretical Modeling of a Supersonic Flow CO Chemical Laser
- Measurements of Small Signal Gain Coefficients of a Supersonic Flow CO Chemical Laser
- Numerical Simulation of an N_2O Downstream Mixing Gasdynamic Laser