Plastic Properties of Metal-Metal Composites : A Numerical Investigation
スポンサーリンク
概要
- 論文の詳細を見る
A two-dimensional finite element model of an elastic-plastic solid(aluminum)is used to predict the plastic properties including stress-strain behaviour of aluminum composites containing up to 40 volume percent particulate reinforcements under combined loading up to 0.2 in equivalent logarithmic strain. The effects of reinforcement size, shape, contents, orientation, elastic properties and loading conditions on the overall behavior of the composite are investigated. The elastic modulus of the composites is isotropic, almost independent of the type of reinforcement, and controlled solely by the volume percentage of reinforcement present. The work hardening exponent of the composites(one of the plastic properties)is surprisingly influenced by the ratio(γ)of the elastic constants of the reinforcement and the matrix in an inverse manner. It is also affected by the volume fraction, size, shape, orientation and distribution of the reinforcement. The variation in flow stress is controlled primarily by volume fraction, type, distribution and γ. For various loading conditions, the parameters, namely, the work hardening exponent, elastic modulus and flow stress of the composites for all kinds of reinforcements, remain almost constant for a particular value of γ and volume fraction with a slight change in the values for plane strain tension. For porous solids, these parameters are affected slightly by the loading conditions. Furthermore, the degree of constitutive softening of porous solids is strongly dependent on the volume fraction and shape of voids. A comparison of properties with conventional aluminum shows that an improvement in the plastic properety of a metal by combination with other metals could become an interesting subject, especially in the field of metal forming processes. For such research, the FEM model used here is a powerful tool.
- 一般社団法人日本機械学会の論文
- 1997-04-15
著者
-
IDRIS A.B.M.
Doctoral Graduate School
-
Gotoh Manabu
Department Of Mechanical & Systems Engineering Gifu University
-
Idris A.b.m.
Doctoral Graduate School Department Of Mechanical Engineering Gifu University
関連論文
- Finite Element Simulation of Deformation of Fiber-Reinforced Materials in the Plastic Range : Model Proposition and Tensile Behaviors
- Finite-Element Simulation of Deformation and Breakage in Sheet Metal Forming : 2nd Report, An Elastic-Plastic Analysis of Square-Cup Drawing Process
- Finite-Element Simulation of Deformation and Breakage in Sheet Metal Forming : 1st Report, Basic Theory
- Analysis of the Localized Deformation of Sheet Metals Under Uniaxial tension
- Shape Imperfection in Cylindrical Cups Formed by Processes of Deep- and Stretch-Drawing with Ironing
- A Numerical Study of Dynamic Buckling of Thin-Walled Hollow Square Columns Subjected to Axial Impact(Computational Mechanics)
- Numerical Simulations of Unexpected Phenomena in Plane Strain Compression of Multilayered Blocks
- Unexpected Phenomena in Multilayered Copper Subjected to Plane Strain Compression
- Development of Drop-Hammer Compression Apparatus with Controlled Stopping Device and Its Application to Bonding Test
- Forming Limit Strain of Sheet Metals Subjected to Plane Strain Tension
- Shape Imperfection in Cylindrical Cups Formed by Processes of Deep- and Stretch-Drawing with Ironing : Three-Dimensional Radius Distribution of Cup Wall
- An Analysis of Axisymmetric Sheet Forming by the Shell Finite Element Method : (The Case Where Gotoh's Plastic Constitutive Equation and Fourth-Order Yield Function are Used)
- Plastic Properties of Metal-Metal Composites : A Numerical Investigation
- Effect of Out-of-Plane Stress on the Forming Limit Strain of Sheet Metals
- A Numerical Investigation of Cup-Forming by the Stretch-Drawing Process-Single and Double Operations
- On the Elastic-Plastic Constitutive Equations in Incremental Form
- Improvements of J_2-Deformation Theory and Their Applications to FEM Analyses of Large Elastic-Plastic Deformation
- CRUSH BEHAVIOR OF HONEYCOMB STRUCTURE IMPACTED BY DROP-HAMMER AND ITS NUMERICAL ANALYSIS
- Theoretical Prediction of Shear-Band-Type Strain Localization and Discussion on Its Relation to Fracture
- The Theoretical Prediction of Forming Limit Strains of Sheet Metals in Press-Forming Processes
- Durability of Cutting Performance of a Knife and Micro-Structural Change of a Knife Edge