Optimization of Truss Topology Using Boundary Cycle : Derivation of Design Variables to Avoid Inexpedient Structure
スポンサーリンク
概要
- 論文の詳細を見る
This paper deals with optimization of truss topology using boundary cycle in algebraic topology. Elimination of unnecessary members from the ground structure, one of the popular means to optimize truss topology, is employed. The elimination has a disadvantage that unstable structures possibly appear in the process of the optimization. Boundary operator, which has the ability to represent equilibrium of internal force in members, is used to generate the boundary cycle from chain. Design variables derived by the boundary cycle can always satisfy this equilibrium and avoid a category of unstable structures without imposing any constraint. An attempt is made through numerical examples to minimize the total weight of a plane truss, which is fixed to a rigid wall and supports a vertical load acting at a point distant from the wall, under the condition that the distribution of strain energy density is uniform and equal to a certain value. The validity of this formulation is verified by the numerical examples concerned with the weight minimization of the truss.
- 一般社団法人日本機械学会の論文
- 1996-07-15
著者
-
Nakagiri S
横浜国立大学工学部
-
Nakagiri Shigeru
Institute Of Industrial Science The University Of Tokyo
-
NAKANISHI Yasuhiko
Department of Mechanical Engineering, Toyohashi University of Technology
-
Nakanishi Yasuhiko
Department Of Mechanical Engineering Toyohashi University Of Technology
関連論文
- 研究速報 : A Note on Stochastic Finite Element Method ( Part 10 ) : On Dimensional Invariance of Advanced First-Order Second-Moment Reliability Index in Analyses of Continuum
- 研究速報 : A Note on Stochastic Finite Element Method ( Part 9 ) : Development of Successive Perturbation Method and its Application to Advanced First-Order Second-Moment Reliability
- Structural Analysis Consultation System Developed by Use of Knowledge Bases and Symbolic Manipulation
- Time History and Spectrum Analysis of a Four-Wheeled Vehicle on an Uneven Road
- Model and Spectrum Analysis of an Uneven Road Surface by Means of the Two-Dimensional Filtered Poission Process : Solid-Mechanics, Strength of Materials
- Random Response Analysis of Vehicle on Uneven road Expressed as Filtered Poisson Process : Series C : Vibration, Control Engineering, Engineering for Industry
- Finite Element Synthesis of Structure Shapes Due to Stress Criteria
- Homology Design for Eigenvector of Bending Vibration Using Finite Element Method
- Shift synthesis to realize linear homologous deformation
- Design Methodology of Flexible Structures by Spring-and-Segment Model
- Interval Estimation of Eigenvalue Problem Based on Finite Element Sensitivity Analysis and Convex Model
- Design Change to Realize Homologous Deformation
- Tangent Hypersphere Method for Optimal Design : Maximization of Vibration Eigenvalue and Minimization of Weight
- Stochastic Finite Element Analysis of Thermal Deformation of fiber Reinforced Plastic Laminated Plate : Series A : Solid-Mechanics, Strength of Materials
- Finite Element Reanalysis of Real Eigenvalue Problem (Case Study of Vibration Eigenvalue) : Series C : Vibration, Control Engineering, Engineering for Industry
- Stochastic Finite Element Analysis of Thermal Deformation and Thermal Stresses of CFRP Laminated Plates
- Structural Optimization under Topological Constraint Represented by Homology Groups : Topological Constraint on One-Dimensional Complex by Use of Zero- and One-Dimensional Homology Groups
- Optimization of Frame Topology Using Boundary Cycle and Genetic Algorithm
- Optimization of Truss Topology Using Boundary Cycle : Derivation of Design Variables to Avoid Inexpedient Structure
- Fluctuation of Structural Response, Why and How
- Eigenvalue Analysis of In-plane Swing of Chains Consisting of Rigid Links
- Representation of Topology Using Homology Groups and Its Application to Structural Optimization : Fitness Value Based upon Topology for Unanalyzable Structures Generated in Genetic Algorithm and Its Effect on Performance of Optimization