Berger-Shaw's theorem for $\mathit{p}$-hyponormal operators(Inequalities in operator theory and its related topics)
スポンサーリンク
概要
著者
関連論文
- クラス A 作用素等のQuasinilpotent part(線形作用素の理論と応用に関する最近の発展)
- QUASINORMALITY AND FUGLEDE-PUTNAM THEOREM FOR CLASS A(s,t) OPERATORS
- EXTENSIONS OF PUTNAM'S INEQUALITY(Recent Developments in Linear Operator Theory and its Applications)
- Class $A(s,t)$作用素のFuglede-Putnam定理 (作用素論における作用素不等式の役割)
- ($p, k$)-QUASIHYPONORMAL作用素のスペクトルについて (作用素不等式に関わる最近の話題)
- $p$-QUASIHYPONORMAL, CLASS A($s, t$)作用素のスペクトルについて (作用素不等式に関わる最近の話題)
- ALGEBRAICALLY PARANORMAL OPERATOR と WEYL の定理 (作用素の構造と関連する最近の話題)
- Notes on the Heinz-Kato-Furuta-Uchiyama inequality (Current topics on operator theory and operator inequalities)
- $P$-hyponormal, $p$-quasihyponormal作用素のスペクトラムの孤立点 (作用素論の発展と諸問題)
- An Example of a $p$-Quasihyponormal Operator (Operator Inequalities and related topics)
- Berger-Shaw's theorem for $\mathit{p}$-hyponormal operators(Inequalities in operator theory and its related topics)
- $\ast$-PARANORMAL OPERATORS AND RELATED TOPICS (Structural study of operators via spectra or numerical ranges)