任意マッハ数条件における流れの準保存形式に基づく数値計算法 : 第1報(流体工学,流体機械)
スポンサーリンク
概要
- 論文の詳細を見る
We present a new numerical method to simulate unsteady fluid flows under a wide range of Mach number conditions : supersonic to natural convection. This method titled QCAM is based on a quasi-conservative formulation for momentum and energy advection. The TVD scheme extended for the present formulation is used to suppress spurious oscillations of the primitive variables (v and E) arising near shock front and contact discontinuity. The Newton iteration is applied to solve coupled equations of mass, EOS, and energy evolution with the div (pv) term, thus accurate mass conservation and the implicit relationship among the status variables are preserved. Some representative calculations (Mach number 2 to 5×10^<-5>) show that this method sounds good. In particular the QCAM produced as accurate solution as strictly conservative AUSM code for high speed flow regime, and also has high potential to reduce CPU time and memory requirement due to its simple structure.
- 一般社団法人日本機械学会の論文
- 2003-06-25
著者
関連論文
- レーザ照射による固体溶融における物質状態の影響
- 高速炉使用済燃料に関する自然対流除熱特性向上の研究
- 気体・液体非定常圧縮性流れのMach-uniform保存形高解像度スキーム(流体工学,流体機械)
- 任意マッハ数条件における流れの準保存形式に基づく数値計算法 : 第1報(流体工学,流体機械)
- 非定常移流方程式に対する高次精度TVD時間進行法の比較・検討
- 低速非定常流れにおける高次精度TVD法の適用性