メゾ力学のための非局所化弾性定数の検討 : 第1報, ミクロ・マクロ連結手法からの定式化
スポンサーリンク
概要
- 論文の詳細を見る
Nonlocal elastic constants associated with the higher-order strain gradients in the cosserat theory are linked to atomic-level properties, in particular, to coefficients that arise in lattice dynamics equations when atomic displacements are expressed in terms of a continuous displacement field. The key objective of this work is to describe elastic behavior on the mesoscopic scale. First the equation of motion (EOM) in the cosserat theory is derived in the most general form with the arguments of the deformation gradient tensor and its material derivative as well. Second the EOM in the lattice dynamics with the harmonic approximation is formulated by introducing the continuous atomic displacement field. Then the nonlocal elastic constants, including the ordinary fourth-order tensor, are expressed in terms of both the atomic positions in a relaxed (stable) configuration and the force constants which are the second derivative of the interatomic potential employed, with respect to position.
- 一般社団法人日本機械学会の論文
- 1996-09-25
著者
関連論文
- 若手に魅力ある21世紀の学会の姿は?
- 微小硬度を用いた局所的ひずみ誘起マルテンサイト変態特性の測定(塑性工学)
- メゾ力学のための非局所化弾性定数の検討 : 第1報, ミクロ・マクロ連結手法からの定式化
- 応力誘起相変態におけるフォノンのソフト化と系の分岐条件