線形傾斜不均質半無限体を伝わる SH 衝撃波頭の簡易計算
スポンサーリンク
概要
- 論文の詳細を見る
In case of homogeneous isotropic half-space, the plane strain problem which a normal load is applied as the step function for the time on the surface is known as "Lamb's problem". To solve this problem H. Lamb performed the inverse transforms of the stress solution given as the Fourier and Laplace double transform by using the Cagniard method and deduced a closed form solution. Even if the material is inhomogeneous, the closed solution is obtained if the governing differential equation can be transformed by carrying out an appropriate coordinate transformation to be able to apply the Cagniard method. Here, as a comparatively easy impact problem the stress field for the case of generating SH elastic wave in a linear gradient inhomogeneous half-space is analyzed using the Cagniard method, and the inhomogeneous properties of this material subjected to the impulsive load are examined.
- 一般社団法人日本機械学会の論文
- 2001-11-25
著者
関連論文
- 東北学生会の活動(東北学生会)(学生会だより)
- 弾性半空間中の微小平面き裂からのSH衝撃波反射応答
- 自由表面に対して傾いた弾性主軸を有する傾斜不均質半空間のSH衝撃応答
- 自由表面に対して傾いた弾性主軸を有する傾斜不均質半空間のSH衝撃応答
- 線形傾斜不均質半無限体を伝わる SH 衝撃波頭の簡易計算
- 傾斜不均質層におけるSH波の二次元反射エネルギー計算 : 合理化不均質層要素による積層近似
- 傾斜不均質層による反射SH波の合理的二次元解析