New Proposal of Crack Energy Density Concept as a Fundamental Fracture Mechanics Parameter
スポンサーリンク
概要
- 論文の詳細を見る
Crack energy density concept is newly proposed as one of the most important parameters in fracture mechanics, and the role of it is discussed. This parameter represents the state of the work absorbed (strain energy in case of the continuum) at crack tip per unit area of crack plane generally, and it should be called, as it were, strain energy area density especially for the case of the continuum. The introduction of the concept enables us to make a unified smooth description of the fracture condition from completely elastic (brittle) fracture to ductile fracture with large scale yielding, and also to solve some ambiguous problems in fracture mechanics. For example, the physical meanings of G_0(K_0) criteria ; J_c criteria and COD criteria on fracture are explained clearly through the concept.
- 一般社団法人日本機械学会の論文
著者
関連論文
- Effects of Material Brittle/Ductile Property and Crack Tip Loading Type on Fracture Mode of a Mixed-Mode Crack
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (5 th Report, Comparison with the Fracture Resistances Evaluated by CTOD and CTOA) : Series A : Solid-Mechanics, Strength of Materials
- Evaluation of Fracture Resistance of Stably Growing Crack by Crack Energy Density : 3rd Report, Effect of Sheet Thickness on Fracture Resistance of Ductile Crack in Thin Plate
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (2nd Report, Application to a Ductile Crack in Thin Plate)
- Stress Singularity Analysis of Axisymmetric Piezoelectric Bonded Structure(Fracture Mechanics)
- A Fundamental Study on a Discontinuous Crack Model : A General Constitutive Equation and Evaluation of Crack Parameters
- CED (Crack Energy Density) in an Arbitrary Direction and Load-Displacement Curves
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (1st Report, Derivation of Fundamental Relations and Proposal of Evaluation Method)
- Proposal of New Stability-instability Criterion for Crack Extension Based on Crack Energy Density and Physical Systematization of Other Criteria
- Fracture Parameter for Interface Debonding in Fiber-reinforced Compoiste(Composite 2)
- Evaluation of Fracture Resistance of Stably Growing Crack by Crack Energy Density : 4th Report, Comparison with the Evaluation of Fracture Resistance of J-Integral
- Characteristics of the Stress Intensity Factor of a Circumferential Crack in a Cylinder under Radial Temperature Distribution
- CED (Crack Energy Density) for an Interface Crack
- Path Independent Integral to Creep Crack and Crack Energy Density
- Application of ε_J-integral to Elasto-plastic Crack Problems under Monotonic or Cyclic Loading : Physical Meanings of J (ΔJ) and Analysis of Crack Energy Density
- Evaluation of Crack Energy Density by Using E_J-integral in case of Elasto-plastic and Creep Crack
- Applicability of Compounded Mesh Pattern to Three-Dimensional Interface Problems(Modeling & Simulation)
- Behavior of Creep Crack Growth and Its Simulation from the Standpoint of Crack Energy Density
- Proposal of a New Crack Model Considering the Discontinuity in the Cracked Plane and Its Application to the Evaluation of Crack Parameter
- On the Crack Energy Density and Energy Release Rate for an Elasto-plastic Crack
- New Proposal of Crack Energy Density Concept as a Fundamental Fracture Mechanics Parameter
- A Fundamental Study on Parameters in the Expression of Fatigue Crack Growth Rath : In the Light of Crack Energy Density : Series A : Solid-Mechanics, Strength of Materials
- Fatigue Crack Growth from the Standpoint of Crack Energy Density
- Extension of Crack Energy Density Concept to Arbitrary Direction and Energy Release Rate to Non-self-similar Crack Growth
- Crack Energy Density on a 3-Dimensional Crack : Series A : Solid-Mechanics, Strength of Materials
- The Conservation Law Related to Path Independent Integral and Expression of Crack Energy Density by Path Independent Integral