2個の基円を用いた等角写像法
スポンサーリンク
概要
- 論文の詳細を見る
This paper deals with the general principle of conformally transforming two circles onto two segments or double-row segment lattice, based on the idea that the function for representation will be given by a general expression applicable to the circles situated outside each other or osculating or intersecting each other. The functions are uniformly composed of all the elements of the infinite group of inversion with respect to each circle by a simple rule. The structures of the functions are simplified by some transformation to rearrange their poles at periodic points. Then the double wings are represented by the elliptic function of the second kind. The foregoing principle applies to the double-row lattice. Finally the performances of the Vee-wing lattice are deduced.
- 一般社団法人日本機械学会の論文
- 1960-11-25
著者
関連論文
- ふく流式流体機械の二次元流れの理論(続)
- ふく流式流体機械の二次元流れの理論(続)
- 折線形断面と多角形断面の翼列理論
- 折線形断面と多角形断面の翼列理論
- 2個の基円を用いた等角写像法
- ふく流式流体機械の二次元流れの理論
- ふく流式流体機械の二次元流の理論
- 高速度ころがり摩擦の研究 : 第2報, ころがり摩擦の一般的特性について : 2個の基円を用いた等角写像報