粘弾性における変分法II
スポンサーリンク
概要
- 論文の詳細を見る
In a pervious paper the variation method was developed to find the solution for the equation of motion of three dimensional viscoelastic materials, on the basis of Hamilton's principle of mechanics. Since the stress in that case was not conservative force, we could not get the variation function in a closed form. In the present paper it is shown that if the suitable representation is taken for the variation of strain-rate tensor and a somewhat different form is assumed for Hamilton's principle, we can obtain the variation function in a closed form as a matter of form. The Hamilton's principle is here applied to the variation of displacement-rate instead of that of displacement of the material point. In our case, the variation corresponds to the extremum of work done by the external force. With attention to the equation of motion in the Euler-system(E-system), we put ξ^^¨= Div σ_E + _ρK_E (1) The Hamilton's principle is then assumed to be given in the form [numerical formula] (2) where ξ is the coordinate of the mass point in the material which is placed at x in the natural state, σ_E is stress tensor referring to E-system, K_E is external force acting on the unit mass of the sample and ρ is the material density. Making use of the displacement tensor a : Δξ=a・Δx, where Δ denotes the difference of the coordinates of neighboring two points in the sample, we define the strain tensor e_L = a^+・a/2 as well as the strain-rate tensor e_L=(a^^・^+・a+a^+・a^・a^^・)/2 in the Lagrange system (L-system). The variations of these tensors are assumed to be δe_L = (δa^+・a+a^+・a^+・δa)/2 and δe_L= (δa^^・^+・a+a^+・a^+・δa)/2, and these tensors are transformed to those in E-system by A_E =a^<+-1> ・A_L・a^<-1>. In viscoelastic materials there exist two mechanisms ; one of them is elastic, stored mechanism (1) and the other is viscous, dissipative mechanism (2). It is assumed that each of them is characterized by the corresponding stress tensor and strain tensor σ _i and e_i, i=1,2. The elastic are considered to be the functions of e_1 and e_2, respectably : w=w(e_1) and ε=ε(e_2). After suitable mathematical calculation, we can obtain the variation functions in both E-system and L-system as [numerical formula] (3) [numerical formula] (4) where S and S_0 denote the surface of the sample in deformed and natural states, respectively, and F'_s are the surface forces. The above theory has been illustrated in the laminar flow of the "Newtonian" liquid in a tapered nozzle.
- 社団法人日本材料学会の論文
- 1965-04-15
著者
関連論文
- 5a-KP-2 沈降と流体力学的相互作用
- レオロジー特集号の刊行にあたって
- 4a-KP-9 2成分系モデルの上下部臨界点
- 23a-S-3 ランジェヴァン方程式による融解の取扱
- 4p-D-7 2成分溶液系モデルの相分離
- 4p-D-4 モデル膜に於る構造転移
- 吸着膜のイオン透過 : 生体物理
- 準濃厚高分子溶液の粘弾性 : 高分子
- 4a-F-4 懸濁液の毛管流
- 18A-1 高分子物質の非線型粘弾性
- 18A-1 高分子物質の非線型粘弾性
- 18A-1 高分子物質の非線型粘弾性
- 16C-2 粘彈性の三次元的表式(II)
- 31F6 粘弾性の三次元的表式
- 17A-5 氷の結晶統計
- 高分子濃厚溶液の構造粘性 : 高分子
- 3A7 濃厚高分子溶液内に於ける廻転変形に依る圧力分布 : Weissenberg効果
- 複合膜の整流作用II : 生体物理
- 多変数非線型粘弾性論 : 高分子
- 5p-KP-1 非線型粘弾性
- 4p-KA-10 氷の誘電率
- 非線形粘弾性方程式の一試論
- 13a-S-3 高分子濃原系の緩和スペクトル
- 非線形レオロジーの網目理論
- 非線形粘弾性の構成方程式
- 非線形非定常レオロジー
- 1a-L-9 非線型粘弾性緩和スペクトル
- 3a-G-3 混合溶媒中の高分子
- 三次元非線型粘弾性論 : 高分子
- 高分子濃厚系の非定常粘弾性 : 高分子
- 高分子濃厚系の非ニュートン流動
- 三次元線形粘弾性の現象論
- 5a-K-6 薄い二重荷電膜の整流性
- 準濃厚高分子溶液の粘弾性
- 12a-D-2 Sigma効果の現象論
- 高分子レオロジーの問題点 : 高分子シンポジウム : 高分子物理の現状と将来の展望
- ヘリックス高分子の熱揺動 : 高分子
- 粘弾性における変分法II
- 5p-M-10 粘弾性における変分法 (II) (幻)
- 粘弾性における変分法(高分子)
- 三次元粘弾性理論とBarus効果の理論 : 分散系のレオロジー,その他
- 7a-A-4 三次元粘弾性論(III)
- L.Pauling and H.A. Itano, ed: Molecular Structure and Biological Specificity, American Institute of Biological Science, Washington, USA, 1957, 195頁, 15.5×23.5cm.
- Rouse-Bueche模型の一考察 : 高分子
- 三次元粘弾性論 : 高分子レオロジー
- 高分子
- 高分子溶液の流動性
- 非線型粘弾性の力学模型(高分子学会賞-科学技術賞)
- 高分子鎖の分子運動 (現代の高分子(特集))
- エルムの学園にて
- 非ニュートン流動の現象論 : 高分子液体の流動性
- 粘弾性における変分法 : 分散形のレオロジー, その他