Darboux Transformation and Soliton-like Solutions for a Generalized q-KdV Hierarchy(General)
スポンサーリンク
概要
- 論文の詳細を見る
By introducing a q-deformed spectral problem, we derive a new generalized q-KdV hierarchy with variable coefficients. Darboux matrix technique is further extended to construct an explicit and universal Darboux transformation for the q-KdV hierarchy. It is found that the Darboux transformation admits a theorem of permutability theorem and a superposition formula. In particular, the soliton-like solutions whose speeds may depend on time variable t are obtained by applying the Darboux transformation and superposition formula.
- 社団法人日本物理学会の論文
- 2004-11-15
著者
-
Fan E
Fudan Univ. Shanghai Chn
-
FAN Engui
Institute of Mathematics and Key Lab for Nonlinear Mathematical Models and Methods, Fudan University
関連論文
- Darboux Transformation and Soliton-like Solutions for a Generalized q-KdV Hierarchy(General)
- A New Algebraic Method for Finding a Series of Travelling Wave Solution to a Coupled Ito System(General)
- Darboux Transformation and Soliton-like Solutions for a Generalized q-KdV Hierarchy(General)