Motion of Energy Levels and Energy Dependent Constants of Motion
スポンサーリンク
概要
- 論文の詳細を見る
From the eigenvalue equation (#.-F-21')?p.(2))=f.(2)?p.(,11)) one can derive anautonomous system of first order differential equations fc7r the eigenvalues E.(2) andthe matrix elements F..(2)=<P.(2)l El!,(,11)>where ,Ills the independent variable.We investigate the case where the Hamiltonian H is given by a finite dimensional symmetric matrix and derive the energy dependent constants of motion. Furthermore wedescribe the connection with stationary state perturbation theory. Several open ques-Lions are also discussed.
- 社団法人日本物理学会の論文
- 1987-09-15
著者
-
Steeb W.-H.
Rand Afrikaans University, Department of Physics
-
Louw J.A.
Rand Afrikaans University, Department of Physics
-
Louw J.A.
Rand Afrikaans University,Department of Physics
-
Steeb W.-H.
Rand Afrikaans University,Department of Physics
関連論文
- Conservation Laws, Resonances and Painleve Test
- Motion of Energy Levels and Energy Dependent Constants of Motion