Antiferromagnetic Heisenberg Chains with Bond Alternation and Quenched Disorder(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
スポンサーリンク
概要
- 論文の詳細を見る
We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_<2x>Br_<2(1-x)>(γ-pic)_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We discuss consequences of our results for the experimentally measured low-temperature susceptibility of CuCl_<2x>Br_<2(1-X)>(γ-pic)_2.
- 社団法人日本物理学会の論文
- 2004-06-15
著者
-
Lin Yu-cheng
Institut Fur Physik Wa 331 Johannes Gutenberg-universitat
-
Rieger Heiko
Theoretische Physik Universitat Des Saarlandes
-
IGLOI Ferenc
Research Institute for Solid State Physics and Optics
-
Igloi Ferenc
Research Institute For Solid State Physics And Optics:institute Of Theoretical Physics Szeged Univer
-
LIN Yu-Cheng
NIC, c/o Forschungszentrum Julich
-
IGLOI Ferenc
Res. Inst. f. Solid State Physics & Optics:Institute for Theoretical Physics, Szeged University
-
Igloi Ferenc
Research Institute for Solid State Physics and Optics:Institute of Theoretical Physics, Szeged University
-
RIEGER Heiko
NIC, c/o Forschungszentrum Julich:FB 10.1 Theoret. Physik, Universitat d. Saarlandes
-
Lin Yu-Cheng
Institut fur Physik, WA 331, Johannes Gutenberg-Universitat
関連論文
- Antiferromagnetic Heisenberg Chains with Bond Alternation and Quenched Disorder(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Numerical Renormalization Group Study of Random Transverse Ising Models in One and Two Space Dimensions