Generalization of Energy Level Motion
スポンサーリンク
概要
- 論文の詳細を見る
From the eigenvalue equation H,l p.(,11))=A.(2)l p.(2)) where H,;H.A-2V, onecan derive an autonomous system of first-order differential equations for the eigenvalues E.(A) and the matrix elements F..(1):=(p.(2)l Vl p,(2)) where ,11 is the independent variable. To solve the dynamical system we need the initial values E.() = 0)and l p.(2=0)). Thus one finds the motion of the energy levels E.(2). We derive thedependence of the survival probability as well as some thermodynamic quantities(free energy, entropy, specific heat) on ). Then we derive the equations of motions forthe extended case H, = H.-F 1 V. -X- )'V. and give an application to a supersymmetricHamiltonian.
- 社団法人日本物理学会の論文
- 1988-06-15
著者
-
Steeb W.-h.
Department Of Applied Mathematics And Nonlinear Studies Rand Afrikaans University
-
Tonder A.J.van
Department of Physics,Rand Afrikaans University
関連論文
- Symmetries and First Integrals for Nonlinear Dynamical Systems: Hilbert Space Approach. I : Ordinary Differential Equations : General and Mathematical Physics
- Symmetries and First Integrals for Nonlinear Dynamical Systems: Hilbert Space Approach. II : Partial Differential Equations : General and Mathematical Physics
- Soliton Equations, Commutativity Condition and Painleve Property : Condensed Matter and Statistical Physics
- Conservation Laws, Resonances and Painleve Test
- A Note on Nambu Mechanics and the Painleve Test
- Lax Formulation, Painleve Property and Recursion Operator for a Space-Dependent Burgers' Equation
- Lie and Lie Backlund Vector Fields and Painleve Test for a Class of Scale Invariant Partial Differential Equations of First Order
- Coupled Chaotic Oscillators
- Generalization of Energy Level Motion