Rigid Motion in Special and General Relativity
スポンサーリンク
概要
- 論文の詳細を見る
We give a definition of rigid congruences in both General and Special Relativity, and we try to make the definition plausible. To this end we recall Fermat's principle in General Relativity and we show that this principle allows us to reinterpret the "quotient metric" as the quadratic form which defines the optical length in a gravitational field. We apply the definition to the Earth-Sun system in the post-Newtonian approximation. Furthermore we compute the Fermat tensor and the corresrponding relative variation of the speed of light in a Michelson-Morley like experiment performed on the Earth's surface. According to all measurements to date, this quantity is extremely small (10^<-13>).
- 社団法人日本物理学会の論文
- 1994-12-15
著者
-
Bel Ll.
Laboratoire De Gravitation Et Cosmologie Relativistes
-
Martin J.
Grupo de Fisica Teorica, Universidad de Salamanca
-
Molina A.
Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona i Societat Catalana de Fisica
-
Molina A.
Fisica Fonamental Facultat De Fisica Universitat De Barcelona I Societat Catalana De Fisica