量子モンテカルロ法の最近の発展
スポンサーリンク
概要
- 論文の詳細を見る
Using Monte Carlo methods, we can simulate various phenomena in classical many-body systems. But Monte Carlo simulations for quantum systems are suffered from some particular problems for a long time. Recent developments of quantum Monte Carlo algorithms provide significant improvement in Monte Carlo simulations for some important quantum models. In this paper, such recent developments are reviewed from a unified perspective. In particular, two algorithms-loop and directed loop algorithms-are presented. Firstly, we will give the basis of quantum Monte Carlo method with path-integral representation. Quantum Monte Carlo algorithm gives importance sampling of configurations on path-integral representation, but a conventional one is not efficient. Secondly, we will introduce new novel variables in path-integral representation, which called "graph variable". And we will present loop and directed loop algorithms using such new graph variables.
- 2005-09-27
著者
関連論文
- 21aPS-16 量子系のマルチカノニカル法の効率に関する研究(ポスターセッション,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 26aPS-25 量子スピンモデルの最適化マルチカノニカル法(26aPS 領域11ポスターセッション,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 19aPS-74 非一様希釈モデルの量子パーコレーション(領域11ポスターセッション,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 量子モンテカルロ法の最近の発展
- 多体問題におけるテンソルネットワーク法 (次世代計算科学の基盤技術とその展開)