計算ホモロジー理論と非線形力学系の解析(<小特集>力学系の位相計算理論)
スポンサーリンク
概要
- 論文の詳細を見る
We argue that computational homology can play an important role in the analysis of complicated temporal and/or spatial behavior associated with nonlinear systems. A brief description concerning the homology of spaces and maps is provided. This is followed by examples that indicate how the homology of spaces can be used to study the evolution of complicated patterns arising from numerical simulations and physical experiments. We also indicate how in conjunction with numerical computations, homology can be used to obtain computer assisted proofs in dynamics.
- 日本応用数理学会の論文
- 2005-06-24
著者
-
中村 健一
電気通信大学
-
Mischaikow Konstantin
Georgia Institute Of Technology
-
ミシャイコフ コンスタンチン
Georgia Institute Of Technology
-
中村 健一
電気通信大学情報工学科
関連論文
- Traveling Waves in a Band Domain with Quasi-Periodically Undulating Boundaries (Pattern formation and asymptotic geometric structure in reaction-diffusion systems)
- 均質化の基本的なアイデアと不均質媒体中のフロント伝播への応用 (第4回生物数学の理論とその応用)
- Large time behavior of unbounded global solutions to some nonlinear diffusion equations(Variational Problems and Related Topics)
- 小特集「力学系の位相計算理論」にあたって
- Bounds for effective speeds of traveling fronts in spatially periodic media (Conference on Dynamics of Patterns in Reaction-Diffusion Systems and the Related Topics)
- Asymptotic behavior of solutions to a model of spiral crystal growth (Nonlinear Diffusive Systems and Related Topics)
- Navier-Stokes方程式の非有界な解は爆発し得る (流体と気体の数学解析)
- 計算ホモロジー理論と非線形力学系の解析(力学系の位相計算理論)