固有値問題の数理 : 近似解法から精度保証まで
スポンサーリンク
概要
- 論文の詳細を見る
An eigenvalue of an operator takes an important role to understand an nonlinear phenomenon in science and engineering. Especially, it often becomes a key value when we consider a behavior of dynamical systems. This article concerns with such an eigenvalue problem for matrices and differential operators. We first deal with a theoretical framework for it by introducing a concept of spectrum, and consider a matrix eigenvalue problem. Then we concern with an infinite dimensional eigenvalue problem, that is to obtain eigenvalues and eigenvectors for an operator in infinite dimensional domain of definition. We explain it from classical procedure to our recent results making use of the numerical verification methods. We also deal with some applications of the verified eigenvalues and eigenvectors to algebla, another numerical verification methods for nonlinear problems and stability analysis of bifurcation phenomenon in hydrodinamics.
- 2003-09-25
著者
関連論文
- 楕円型作用素の固有値問題の精度保証とその応用
- 無限次元固有値問題に対する固有値の非存在証明 (数値解析と数値計算アルゴリズムの最近の展開)
- Numerical verification by infinite dimensional Newton's method for stationary solutions of the Navier-Stokes problems (New Development of Numerical Analysis in the 21st Century)
- Numerical verification method for spectral problems (Spectral and Scattering Theory and Related Topics)
- 計算機援用証明チュートリアル2005
- 固有値問題の数理 : 近似解法から精度保証まで
- 無限次元固有値問題に対する精度保証付き数値計算の現状と今後の展望 (微分方程式の数値解法と線形計算)
- 非可換調和振動子に関するcoupling型固有値問題の精度保証について (精度保証付き数値計算法とその周辺)
- とびらの言葉