Symplectic積分法の構造再現性について : 自由度1の線形系を基にして
スポンサーリンク
概要
- 論文の詳細を見る
The orbit of a linear Hamiltonian system with one degree of freedom is closed, divergent to infinity exponentially, or divergent as a free motion. This paper proves that every symplectic integrator reproduces a similar phase portrait in the former two cases when the step size is small enouth. This fact is considered based on a one-parameter family of conservatives admitted by a discrete and continuous systems. Furthermore, the existence of a conservative is studied for certain nonlinear systems.
- 日本応用数理学会の論文
- 1996-12-15
著者
関連論文
- A Study on Lie Algebra Spanned by Quadratic First Integrals Admitted by Discrete Linear Hamiltonian System (Dynamical Systems and Differential Geometry)
- Symplectic Runge-Kutta公式の最近の話題について (力学系と微分幾何学)
- 可逆なRunge-Kutta公式とsymplectic性 (力学系と微分幾何学)
- シンプレクテック写像の応用について : ハミルトン系の離散版
- Symplectic積分法の構造再現性について : 自由度1の線形系を基にして