Durand-Kerner法の効率的な初期値の簡単な設定法
スポンサーリンク
概要
- 論文の詳細を見る
We propose a simple procedure for setting the efficient starting values of the Durand-Kerner iteration, which finds all zeros α_i(i = 1, ・・・, n) of a polynomial of degree n simultaneously. In our new procedure, the starting values are located on the circle centered at β with radius γ_<gm>where β = 1/nΣ^^n__<i=1>α_i, and γ_<gm> is the geometric mean of the deviations |α_i - β|. The computational cost for this procedure is extremely cheap compared with that for Aberth's procedure. Moreover, the various numerical examples show that our new method reduces the number of iterations tremendously over any other ones, particularly when some of the deviations |α_i - β| are large.
- 1993-12-15
著者
関連論文
- Durand-Kerner法の効率的な初期値の簡単な設定法
- 予測子・修正子型並列ブロック法とそのきざみ幅の制御
- BDF型ブロック法の並列性と計算効率
- TrigonometricRunge-Kutta-Nystrom Method for Solving Periodic Initial Value Problems
- 第23回数値解析シンポジウム(学術会合報告)