x≥1のときの不完全ガンマ関数Γ(a, x)の数値計算
スポンサーリンク
概要
- 論文の詳細を見る
An efficient method for calculating incomplete gamma functions Γ(a, x)for x≥1 is discussed. It is shown that modifying the continued fraction for Γ(a, x)by using appropriate modifying factors yields convergence acceleration with a remarkable reduction of the number of terms required for a given accuracy. In addition sequences of upper and lower bounds for Γ(a, x)are also derived and hence in a wide region of parameters the new method introduced here is proved to be useful at a higher level of accuracy as well as at a lower level.
- 日本応用数理学会の論文
- 2000-03-15
著者
関連論文
- 数量化理論I類における偏相関係数
- 誤差関数の評価不等式
- x≥1のときの不完全ガンマ関数Γ(a, x)の数値計算
- 小さいxのときのガンマ分布関数γ(a,x)の数値計算
- 収束の遅い数列の加速法
- 連分数展開の収束の加速法と確率分布関数(非線形可積分系の応用数理)