COMPARISON OF AN OXALATE-EXTRACTION METHOD AND AN INFRARED SPECTROSCOPIC METHOD FOR DETERMINING ALLOPHANE IN SOIL CLAYS
スポンサーリンク
概要
- 論文の詳細を見る
The clay fractions of nine New Zealand soils and an andesitic pumice, separated using minimal pretreatment, were examined by infrared spectroscopy (IR) and by dissolution in acid oxalate and pyrophosphate reagents. Allophane, with an Al/Si ratio close to 2/1, was present in most samples and was estimated quantitatively for acid-oxalate extraction of Si and from the IR absorbance at 348 cm^<-1>. These two methods gave quantitative results which were in good agreement not only for clays formed from volcanic ash but also for clays formed from basalt and clays formed from basalt and clays formed in podzolized soils. The highest allophane contents in the soil clays occurred in the clays from the Mairoa Ash soil and from the Addison and One Tree Point podzolized soils.
- 社団法人日本土壌肥料学会の論文
著者
-
Parfitt R.l.
Soil Bureau D.s.1.r. Lower Hutt New Zealand
-
Parfitt R.l.
Soil Bureau Department Of Scientlfic And Industrial Research
-
HENMI T
Faculty of Agriculture, Ehime University
-
Henmi T
Faculty Of Agriculture Ehime University
関連論文
- ADSORPTION MECHANISM OF Pb ON PAPER SLUDGE ASH TREATED BY NaOH HYDROTHERMAL REACTUION
- COMPARISON OF AN OXALATE-EXTRACTION METHOD AND AN INFRARED SPECTROSCOPIC METHOD FOR DETERMINING ALLOPHANE IN SOIL CLAYS
- P29 Formation of Na-X zeolite from paper sludge ash and its application for toluene adsorption
- B20 Synthesis of CeO_2-ZSM-11 Nanocomposite from Inorganic Silicon Source and its Characterization
- 4-4 Synthesis of TiO2-Zeolite Nano Composite and Its Application for VOCs Adsorption
- P37 Synthesis of TiO_2-High Silica Zeolite from Waste Materials and its Photo-Catalytic Properties
- A11 Change in Surface Acidity of Allophane upon P Adsorption and its Mechanism Analysis by Molecular Orbital Method
- A11 Change in surface acidity of allophane upon P adsorption and its Mechanism Analysis by Molecular Orbital Method
- 4-10 Change in Dispersion and Flocculation Properties of Allophane with P adsorption
- 4-7 Novel Mechanism of Change in Charge Characteristics of Allophane Associated with Phosphate Adsorption
- 4-3 Modification of chemical properties of clays with adsorption of oxoacids
- P69. Fate of Surface Charge Induced by P Adsorption on Allophane (Abstracts of Paper Presented at the 1998 Annval Meeting)
- P69 Fate of Surface Charge Induced by P Adsorption on Allophane
- 4-7 Characterization and Mechanism in Surface Charge Induced Allophane by P Adsorption
- PHOSPHATE ADSORPTION ON NANO-BALL ALLOPHANE AND ITS MOLECULAR ORBITAL ANALYSIS
- A17 Effect of Si/Al ratio of allophane on adsorption of phosphate and oxalate
- P33 Lead adsorption on montmorillonite as affected by coexisting phosphate
- A15 Competitive adsorption of oxalate and phosphate on allophane at low concentration
- COMMENT ON CLAY MINERALOGY OF TWO NORTHLAND SOILS NEW ZEALAND
- 4-7 Competitive Adsorption of Phosphate with Oxalate on Nano-ball Allophane
- A12 Change in Surface Charge Properties of Nano ball Allophane as Influenced by Sulfate Adsorption
- CHARGE CHARACTERISTICS MODIFICATION MECHANISMS OF NANO-BALL ALLOPHANE UPON ORTHOSILICIC ACID ADSORPTION
- CHANGE IN SURFACE CHARGE PROPERTIES OF NANO-BALL ALLOPHANE AS INFLUENCED BY SULFATE ADSORPTION
- A12 CHANGE IN SURFACE CHARGE PROPERTIES OF NANO-BALL ALLOPHANE AS INFLUENCED BY SULFATE ADSORPTION
- ADSORPTION MECHANISMS OF COPPER AND ZINC ON NANO-BALL ALLOPHANE
- 4-13 Effect of Sulfate Adsorption on the Surface Charge Properties of Nano-ball Allophane
- 4-11 Effect of Zinc Adsorption on some Surface Charge Characteristics of Nano-Ball Allophane
- B5 Orthosilicic Acid Adsorptive and Some Surface Property Modification Mechanisms of Nano-Ball allophane
- B3 ADSORPTION OF SOME HEAVY METALS ON NANO-BALL ALLOPHANE
- B2 Sulfate and Nitrate Adsorption on Nano-ball Allophane
- ZINC ADSORPTION ON NANO-BALL ALLOPHANES WITH DIFFERENT Si/Al RATIOS
- CHANGE IN CHARGE CHARACTERISTICS OF ALLOPHANE WITH ADSORPTION OF LOW MOLECULAR WEIGHT ORGANIC ACIDS
- B14 Surface Charge Characteristics of Allophane as Affected by Some Organic Compounds Adsorption
- B3 ADSORPTION OF SULFATE ON NANO-BALL ALLOPHANE
- B2 Adsorption of Orthosilicic Acid on Some Poorly Ordered Aluminosilicates
- 4-13 ADSORPTION MECAHNISM OF SOME ORGANIC ANIONS ON NANO-BALL ALLOPHANE
- ADSORPTIVE MECHANISMS OF ORTHOSILICIC ACID ON NANO-BALL ALLOPHANE
- B15. The Adsorption of Some Selected Organic Compounds on Nano-Ball Allophane (Abstract of Paper Presented at the 1999 Annual Meeting)
- ADSORPTION OF SOME LOW MOLECULAR WEIGHT ORGANIC ACIDS ON NANO-BALL ALLOPHANE
- 4-2 Chemical and Thermal Changes in Allophane by Some Organic Acids and Their Salts
- NEW CONCEPTS FOR CHANGE IN CHARGE CHARACTERISTICS OF ALLOPHANE WITH-PHOSPHATE ADSORPTION
- A5.P61. Dissolution of Al and Si from Allophane by some organic solutions (Abstracts of Paper Presented at the 1998 Annval Meeting)
- B20 Change in surface acidity of nano-ball allophane by B adsorption
- A5 Dissolution of Al and Si from Allophane by Some Organic Solutions
- 4-10 Reaction of Allophane with Selected Organic Acids and Their Salts
- BORON ADSORPTION ON ALLOPHANE WITH NANO-BALL MORPHOLOGY
- CHANGE IN THE SURFACE ACIDITY OF ALLOPHANE BY PHOSPHATE ADSORPTION
- 4-5 PHOSPHATE ADSORPTION ON ALLOPHANES IN RELATION TO THEIR Si/Al ATOMIC RATIO