Ghost Orbit Bifurcations in Semiclassical Spectra
スポンサーリンク
概要
- 論文の詳細を見る
Gutzwiller's semiclassical trace formula for the density of states in a chaotic system diverges near bifurcations of periodic orbits, where it must be replaced by a modified one with uniform approximations.It is well known that, when applying these approximations, complex predecessors of orbits created in the bifurcation ("ghost orbits") can produce clear signatures in the semiclassical spectra.We demonstrate that these orbits themselves can undergo bifurcations, resulting in complex, non-generic bifurcation scenarios.We do so by studying an example taken from the Diamagnetic Kepler Problem.By application of normal form theory, we construct an analytic description of the complete bifurcation scenario, which is then used to calculate the pertinent uniform approximation.The ghost orbit bifurcation turns out to produce signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits would.
- 理論物理学刊行会の論文
- 2000-07-14
著者
-
Bartsch Thomas
Institut Fur Theoretische Physik 1 Universitat Stuttgart
-
Main Jorg
Institut Fur Theoretische Physik I Universitat Stuttgart
-
Main Jorg
Institut Fur Theoretische Physik 1 Universitat Stuttgart
-
WUNNER Gunter
Institut fur Theoretische Physik 1, Universitat Stuttgart
-
WUNNER Gunter
Lehrstuhl fur Theoretische Astrophysik, University Tubingen
-
Wunner G
Institut Fur Theoretische Physik 1 Universitat Stuttgart
-
BARTSCH Thomas
Institut fur Theoretische Physik 1, Universitat Stuttgart
-
MAIN Jorg
Institut fur Theoretische Physik 1, Universitat Stuttgart
-
Iwunner Gunter
Institut fur Theoretische Physik 1, Universitat Stuttgart
関連論文
- Gluing Torus Families across a Singularity : The Lens Space for the Hydrogen Atom in Crossed Fields(Quantum Mechanics and Chaos)
- Ghost Orbit Bifurcations in Semiclassical Spectra
- Classical and Quantal Chaos in the Diamagnetic Kepler Problem : Part II. Quantal Aspects : New Trends in Chaotic Dynamics of Hamiltonian Systems