On the Representation of the Canonical Commutation Relation of Bose Fields
スポンサーリンク
概要
- 論文の詳細を見る
A representation of the canonical commutation relation of Bose fields is given in a way which is independent of the choice of the bases of the test functions and covariant with respect to the Euclidean transformation of the coordinate system. It is shown that the representation is characterized by an integral on the conjugate space L^* of the space L of the test functions and a real function on Σ⨂L^* where Σ is the group of the transformations f→u^<-1>f+ψ; f^EL^*, ψ^EL and μ is a Euclidean transformation of L^*. The conditions for the irreducibility of a representation and the unitary equivalence of the representations and the existence of unique vacuum state are given. An example of the inequivalent Euclidean covariant irreducible representations containing unique vacuum state is given.
- 理論物理学刊行会の論文
- 1960-06-25
著者
-
Fukutome Hideo
Research Institute For Fundamental Physics Kyoto University
-
FUKUTOME Hideo
Research Institute for Fundamental Physics, Kyoto University
関連論文
- On the Representation of the Canonical Commutation Relation of Bose Fields
- On The Electronic State of Macromolecules. I : A General Theory of Electron Correlation
- Elastic Ether Theory of Elementary Particles. I : Classical Theory