3D BEC Bright Solitons under Transverse Confinement : Analytical Results with the Nonpolynomial Schrodinger Equation
スポンサーリンク
概要
- 論文の詳細を見る
The Bose-Einstein condensate (BEC) of a dilute gas of bosons is well described by the three-dimensional Gross-Pitaevskii equation (3D GPE) , that is a nonlinear Schrodinger equation. By imposing a transverse confinement the BEC can travel only in the cylindrical axial direction. We show that in this case the BEC with attractive interaction admits a 3D bright soliton solution which generalizes the text-book one, that is valid in the one-dimensional limit (1D GPE). Contrary to the ID case, the 3D bright soliton exists only below a critical number of Bosons that depends on the extent of confinement. Finally, we find that the 3D bright soliton collapses if its density excedes a critical value. Our results are obtained by using a nonpolynomial Schrodinger equation (NPSE) , an effective one-dimensional equation derived from the 3D GPE.
- 理論物理学刊行会の論文
- 2003-09-30
著者
-
Salasnich L
Istituto Nazionale Per La Fisica Delta Materia Unita Di Milano Dipartimento Di Fisica Universita Di
-
SALASNICH Luca
Istituto Nazionale per la Fisica delta Materia, Unita di Milano, Dipartimento di Fisica, Universita
-
Salasnich Luca
Istituto Nazionale Per La Fisica Della Materia Unita Di Milano Dipartimento Di Fisica Universita Di
-
SALASNICH Luca
Istituto Nazionale per la Fisica delta Materia, Unita di Milano, Dipartimento di Fisica, Universita di Milano
関連論文
- 3D BEC Bright Solitons under Transverse Confinement : Analytical Results with the Nonpolynomial Schrodinger Equation
- Chaotic Oscillations in Finite Quantum Systems : Trapped Bose-Einstein Condensates
- High Order WKB Prediction of the Energy Splitting in the Symmertic Double Well Potential