STATIONARY INDEX AND ORIENTATION OF EQUALITY CONSTRAINED MULTIPARAMETRIC NONLINEAR PROGRAMS
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we study a local property of the zero set of a differentiable map F : R^<n+d> → R^n. We prove that, under a regular value condition, for each x∈ F^<-1>(o), there exist a neighborhood U of x and a sign c ∈ {-1, 1} such that sign det[x(p)^T_<σ_d> = c ・ sgnσ・ sign det D_xF(x(p))_<σ^n> for all permutation σ of degree (n + d), where p is a d-dimensional parametrization parameter vector of the zero set F^<-1>(o) in an open subset V of R^d and [x(p) ^T__<σ_d>] := (∂x_j/∂p_l)T(j ∈ σ^<-1>(n + 1,…, n+ d), l ∈ {1,…, d}), D_xF(x(p))_<σ^n> = [∂F_i(x(p))/∂x_k](i ∈ {1,…,n},k ∈ σ^<-1>(1,…,n)). This results naturally leads to an index theory. We show a local property of the change of the Morse index and the orientation of critical point set w.r.t. the multiparametric function f :R^<n+d> → R. Finally, we discuss the change of the stationary index of the equality constrained multiparametric nonlinear programs.
- 社団法人日本オペレーションズ・リサーチ学会の論文
著者
-
Shida Masayuki
Department Of Mathematics Kanagawa University
-
Shindoh Susumu
The National Defense Academy
-
Hirabayashi Ryuichi
Science Univ. of Tokyo
-
Hirabayashi Ryuichi
Sciences University Of Tokyo
関連論文
- The capacitated traveling salesmen location problem
- EULER'S FORMULA VIA POTENTIAL FUNCTIONS
- STATIONARY INDEX AND ORIENTATION OF EQUALITY CONSTRAINED MULTIPARAMETRIC NONLINEAR PROGRAMS
- Structure of zero set for differentiable map
- Change of generalized index to multiparametric optimization problems