ASYMPTOTIC PROPERTIES OF STATIONARY DISTRIBUTIONS IN TWO-STAGE TANDEM QUEUEING SYSTEMS
スポンサーリンク
概要
- 論文の詳細を見る
This paper is concerned with geometric decay properties of the joint queue length distribution p(n_1,n_2) in two-stage tandem queueing system PH/PH/c_1 → /PH/c_2. We prove that, under some conditions, p(n_1,n_2) 〜 C(n_2)η^<n_1> as n_1 → ∞ and p(n_1,n_2) 〜 C^^-(n_1)η^^-^<n_2> as n_2 → ∞. We also obtain the asymptotic form of state probabilities when n_1 is large or when n_2 is large. These results prove a part of the conjecture of a previous paper [1]. The proof is a direct application of a theorem in [7] which proves geometric decay property of the stationary distribution in a quasi-birth-and-death process with a countable number of phases in each level.
- 社団法人日本オペレーションズ・リサーチ学会の論文
著者
-
藤本 衡
東京工業大学情報理工学研究科
-
Fujimoto Kou
Tokyo Institute of Technology
-
Takahashi Yukio
Tokyo Institute of Technology
-
Makimoto Naoki
Tokyo Institute of Technology
-
Makimoto N
Univ. Tsukuba
関連論文
- 東工大で受発信するHTTPトラフィック量の解析(待ち行列)
- 東工大で受発信する通信トラヒック量モデル (第3回ネットワークシンポジウム講演論文集)
- ASYMPTOTIC PROPERTIES OF STATIONARY DISTRIBUTIONS IN TWO-STAGE TANDEM QUEUEING SYSTEMS
- UPPER BOUND FOR THE DECAY RATE OF THE MARGINAL QUEUE-LENGTH DISTRIBUTION IN A TWO-NODE MARKOVIAN QUEUEING SYSTEM(Network Design, Control and Optimization)
- BOUNDS FOR CALL COMPLETION PROBABILITIES IN LARGE-SCALE MOBILE COMMUNICATION NETWORKS(Network Design, Control and Optimization)
- A Backlog Evaluation Formula for Admission Control Based on the Stochastic Network Calculus with Many Flows
- A MARKOVIAN MODEL OF CODED VIDEO TRAFFIC WHICH EXHIBITS LONG-RANGE DEPENDENCE IN STATISTICA LANALYSIS