EXISTENCE CONDITIONS OF THE OPTIMAL STOPPING TIME : THE CASES OF GEOMETRIC BROWNIAN MOTION AND ARITHMETIC BROWNIAN MOTION
スポンサーリンク
概要
- 論文の詳細を見る
A type of optimal investment problem can be regarded as an optimal stopping problem in the field of applied stochastic analysis. This study derives the existence conditions of the optimal stopping time when the stochastic process is a geometric Brownian motion or an arithmetic Brownian motion. The conditions concern the intrinsic value function and are natural extensions of the certainty case. Additionally, they are essential for a well-known result in recent investment theory. They are also applied to an optimal land development problem. The analyses give existing studies rigorous foundations and generalize them.
- 社団法人日本オペレーションズ・リサーチ学会の論文
著者
関連論文
- コミュニティバスの導入とパーク・アンド・ライド政策がもたらす公共交通シフト効果 : 高松都市圏のケース
- 都心居住型ライフスタイルと郊外居住者の意識 : 高松市におけるケース閲覧型調査から
- 都市密度とサービス業の活性度
- EXISTENCE CONDITIONS OF THE OPTIMAL STOPPING TIME : THE CASES OF GEOMETRIC BROWNIAN MOTION AND ARITHMETIC BROWNIAN MOTION