同等規則分析 : 親族分類システムのタイポロジーとシリオノ親族名称体系
スポンサーリンク
概要
- 論文の詳細を見る
The merit of "equivalence rule analysis" as developed by LOUNSBURY is in its ability to describe simply the kinship terminological systems. A set of equivalence rules establishes equivalence relations between all kin types and their focal types in each class of a kinship terminological system, and describes the system as 'a system' constituted of several kinds of equivalence relations. The aims of this paper are to explain that equivalence rule analysis can offer the key to the universal principles that lie behind diverse kinship terminological systems, and to analyse Siriono kinship terminology acting on two methodological constraints proposed in my last paper. In Chapter 1, GREENBERG'S "implicational universal" is explained in a simple way and extended from the viewpoint of equivalence rule analysis. The combination of two equivalence rules describes four types established by LOWIE. The correspondence between each of LOWIE's types and the combination is shown in Tables 1 to 4. In Table 5, Rule 1 and Rule 2 in each of these ' tables are generalized as Rule I and Rule II respectively, and the combination of these rules produces four types. Rule I and II can account for the implicational relations among lineal, parallel co-lineal and cross co-lineal kin types, or among co-lineal, parallel collateral and cross collateral kin types in every generation. When either cross co-lineal or collateral kin types and lineal or co-lineal kin types are designated by a single term, Rule I and Rule II are necessary. In the reduction process to lineal or co-lineal kin types, cross co-lineal or collateral kin types are at once reduced to parallel co-lineal or collateral kin types by Rule II. Therefore, parallel co-lineal or collateral kin types are also contained in the same class. Because the combination of two elements, Rules I and II, can produce only four types as shown in Tables 1 to 5, there remains no possibility of a fifth type in which only lineal and cross co-lineal or co-lineal and cross collateral kin types are designated by a single term. The typology of systems of kin classification whose outline was shown by SCHEFFLER will serve as the basis from which universal principles are extracted. In order to display concretely the typology using equivalence rules, we must express each kind of equivalence relations by a separate equivalence rule just like the result of factorization. In Chapter 2, the importance of the resolution of equivalence relations between kin types into factors is emphasized. The failure of this resolution sometimes causes an overlap between the rules and the need of another rule but which is essentially unnecessary for the description of a system. Table 6 represents a part of the typology of systems of kin classification. All types in the table (Crow, Omaha, Iroquois and Dravidian types) have Halfsibling Rule and Same-sex Sibling Rule which are indicators of classificatory systems. The rules in the lowest level are distinctive features of the subdivision of classificatory systems. Table 6 tells us much about the features of the types through the relations between equivalence rules. In order to give the appropriate positions in the typology of systems of kin classification to hybrid systems like Siriono kinship terminology, the analyst must obey two methodological constraints. These constraints make it possible to separate kin classification from affinal classification, and accord with SCHEFFER'S opinion that systems of affinal classification are logically depedent on systems of kin classification. In Chapter 3, Siriono kinship terminology is analysed and characterized by referring to Table 6.
- 1980-12-30