Honsberger's algorithm for one-dimensional tilings with a three-set
スポンサーリンク
概要
- 論文の詳細を見る
Let p and q be a pair of positive integers. According to an algorithm of Honsberger, a finite interval of the set of integers can be partitioned into congruent copies of a 3-set {0,p,p+q}. Let ƒ(p,q) be the smallest number of copies of {0,p,p+q} to partition an interval by the algorithm. If 3p≤q then ƒ(p,q) is explicitly determined. On the other hand, if p<q<3p then the behavior of ƒ(p,q) is highly complex.
- 2005-03-18
著者
関連論文
- Honsberger's algorithm for one-dimensional tilings with a three-set
- グラフ上の石移動と石交換 (デザイン、符号、グラフおよびその周辺)