層流境界層方程式の解法について
スポンサーリンク
概要
- 論文の詳細を見る
An approximate method for solving the equations for steady, two dimenional boundary layer by using Mises transformation is presented. Chapter 1 deals with incompressible fluid. As is shown by Mises and Karman-Millikan, equation of motion for the boundary layer is written : [numerical formula] where v is kinematic viscosity, z=(u_1^2 - u^2 )/2 (u_1 : outside velocity), z_0=z(ψ=0)=u_1^2/2, [numerical formula] and ψ is stream function defined by [numerical formula], [numerical formula]. Now, 1-z/z_0 in the right side can be expanded in power series of ψ if we take as z Karman-Millikan's outer solution. The essential point of the present method lies in taking only the first term as an approximation. Then using instead of φ a new variable which is a function of φ, we can obtain z in an integral form containing the distribution of the outside velocity in the integrand. Several numerical examples show that the accuracy of the method is satisfactory. In Chapter 2, compressible fluid with Prandtl number 1 is considered, for the case without surface heat transfer. By proper modifications in the definitions of φ, ψ and z, the method of the first chapter is also available for this case. Similarity between compressible and incompressible case is discussed. (Received May 2, 1951)
- 宇宙航空研究開発機構の論文
- 1951-08-20
著者
関連論文
- 2-17.加熱平行棒の伴流中の速度と温度の變動及びそれらの相關の測定(摩擦潤滑,流體力學)(第8囘定期講演會講演要旨)
- 層流境界層方程式の解法について
- 2-22.熱空氣の噴流内の速度温度の変動の測定(東京大学理工学研究所第7回定期講演會プログラム)
- 2-37.液體の流れの中の平板の層流熱傳達(理工學研究所第5囘定期講演會講演アブストラクト)
- 2-20.層流境界層方程式の一つの近似解法(理士學研究所第4囘定期講演會講演アブストラクト)
- 2-23.氣流中の熱平板に關する実驗(東京大学理工学研究所第7回定期講演會プログラム)
- 2-21.亂流ジェットと輸送理論(理士學研究所第4囘定期講演會講演アブストラクト)