Interrelation of Alternative Sets of Lax-Pairs for a Generalized Nonlinear Schrodinger Equation
スポンサーリンク
概要
- 論文の詳細を見る
Examination of the inverse scattering transformation schemes for a generalized nonlinear Schrodinger equation reveals the fact that the algorithm of Chen-Lee-Liu gives rise to the Lax-pairs for the squared eigenfunctions of the Wadati-Konno-Ichikawa scheme, which has been formulated as superposition of the Ablowitz-Kaup-Newell-Segur scheme and the Kaup-Newell scheme.
- 核融合科学研究所の論文
著者
-
Wadati Miki
Research Information Center, Institute of Plasma Physics, Nagoya University
-
Iino Kazuhiro
Research Information Center Institute Of Plasma Physics Nagoya University
-
Ichikawa Yoshihiko
Research Information Center Institute Of Plasma Physics Nagoya University
-
Wadati Miki
Research Information Center Institute Of Plasma Physics Nagoya University:institute Of Physics Colle
-
Wadati Miki
Research Information Center Institute Of Plasma Physics Nagoya University:department Of Physics And
関連論文
- On a New Series of Integrable Nonlinear Evolution Equations
- Lax-Pair Operators for Squared-Sum and Squared-Difference Eigenfunctions
- Interrelation of Alternative Sets of Lax-Pairs for a Generalized Nonlinear Schrodinger Equation
- Alternative Representations of the Inverse Scattering Transformation for the K-d V Equation and the modified K-d V Equation
- Solitons in Plasma and Other Dispersive Media : Dawn of Nonlinear Physics