On CETS-Modules in a torsion theory I
スポンサーリンク
概要
- 論文の詳細を見る
Patrik F . Smith [3] defined the CESS-modudes and obtained several basic results on these modules. In this paper, we generalize the CESS-modules in a torsion theory. Let t be a left exact preradical with following property. IF N is an essential submodule of M, then t(N)-t(M). Using this preradical, we show the following which is our main result : For a module M = M_l [○!+]M_2[○!+]・・・M_n, M is CETS if and only if every closure K of a torsion submodule of M with K∩M_i=0 for some 1≤i≤n, is a direct summand of M.
- 宇部工業高等専門学校の論文
著者
関連論文
- Essential Extensions of Modules in a Torsion Theory
- On a generalization of Papp's theorem
- On the generalized t-full modules
- A Note on M-Saturations I
- On CETS-Modules in a torsion theory I