σ-Extension of locally solid topologies
スポンサーリンク
概要
- 論文の詳細を見る
Let L be an almost σ-Dedekind complete Riesz space. In [9] I. Labuda has shown that if (L, τ) has the σ-Fatou property, then there exists the largest σ-enlargement (L^^〜, τ〜) of (L, τ) that is a unique σ-Nakano space. In this paper we give a sequential version of Theorem 3.7 given in [2] ([1, 24.3]), and the results tell us what Hausdorff locally solid σ-Lebesgue topologies on L extend to a σ-Lebesgue topology on L^s.
- 静岡産業大学の論文