有界平面領域の補間点列と調和補間点列
スポンサーリンク
概要
- 論文の詳細を見る
We show that if D is a bounded open subset of C such that the diameters of the components of C/D are bounded away from zero, then a sequence in D is an interpolating sequence if and only if it is a harmonic interpolating sequence. We also show that for some Zalcman domain R, there exists a sequence in R which is a harmonic interpolating sequence, but is not an interpolating sequence.
- 大同工業大学の論文
著者
関連論文
- ある種の平面領域における極大イデアル空間内での補間点列の特徴付け
- 補間点列と調和補間点列が一致しない平面領域
- 有界平面領域の補間点列と調和補間点列
- リーマン面上の弱分離
- Characterization of the interpolating sequences on a certain plane domain (Harmonic, Analytic function spaces and Linear Operators, II)
- Interpolating sequences on plane domains with hyperbolically rare boundary (Analytic Function Spaces and Operators on these Spaces)
- Separation by bounded analytic functions on subsets of Riemann Surfaces (Harmonic/analytic function spaces and linear operators)
- 集積値問題とファイバー環(Hardy空間の研究 : 函数環と関連して)
- 平面領域上の interpolating sequence について(函数環に関連した諸問題(II))
- 平面領域上のcorona問題について(函数環に関連した諸問題)