擬逆元写像による対称錐の特徴付け (Lie Theoryのひろがりと新たな進展)
スポンサーリンク
概要
著者
関連論文
- 調和解析の問題から (複素幾何学の諸問題)
- M. Duflo教授講演記録(群の表現と非可換調和解析)
- Spherical Fourier transforms of the Berezin kernels on symmetric Siegel domains(Analytic Geometry of the Bergman Kernel and Related Topics)
- 等質 Siegel 領域の対称性条件をめぐって
- Cayley変換像の凸性による対称管状領域の特徴付け (表現論および等質空間上の調和解析)
- Berezin核をめぐって (再生核の理論の応用)
- 擬逆元写像による対称錐の特徴付け (Lie Theoryのひろがりと新たな進展)
- 等質Siegel領域のPoisson核とCayley変換の幾何学的関係 (新世紀への表現論と調和解析)
- Berezin Transforms and Laplace-Beltrami Operators on Homogeneous Siegel Domains : commutativity, symmetry of the domain and a Cayley transform (Lie Groups, Geometric Structures and Differential Equations : One Hundred Years after Sophus Lie)
- Analysis of Berezin Transforms (Representations of Lie Groups and Noncommutative Harmonic Analysis)
- Bochner-Hecke等式の幾つかの証明とその周辺(巾零幾何と解析)
- Algebraically independent generators of invariant differential operators on a bounded symmetric domain(Theory of Prehomogeneous vector spaces)
- Algebraically independent generators of invariant differential operators on a symmetric cone
- Fourier transform of holomorphic discrete series : the case of tube domains
- Representation of a solvable Lie group on $\overline{\partial}_b$ cohomology spaces
- On symmetry of L$^1$(G) for solvable Lie groups
- Plancherel theorem for solvable Lie groups acting simply transitively on Siegel domains(Spherical Distributions and Expansion of the $\delta$-Distributions)
- A description of a space of holomorphic discrete series by means of the Fourier transform on the Silov boundary
- Oscillator群のPaley-Wiener型定理 (等質空間上の調和解析)
- Lie環の歪対称表現作用素に関する一注意 (指標と不変固有超函数)
- 正則凸錐の順序同型写像の線型性 (表現論と調和解析における諸問題)
- Cayley変換像の凸性による準対称ジーゲル領域の対称性条件(群の表現と調和解析の広がり)