A family of processes interpolating the Brownian motion and the self-avoiding process on the Sierpinski gasket and $\mathbb{R}$ (Applications of Renormalization Group Methods in Mathematical Sciences)
スポンサーリンク
概要
著者
関連論文
- 2p-KJ-3 -More on Mean-Field Properties in d>4 dimensional Lattice Systems-
- Hierarchical model and triviality of $\phi^4_4$ (Applications of Renormalization Group Methods in Mathematical Sciences)
- 20世紀の予想--構成的場の量子論
- Renormalization group approach to a generalization of the law of iterated logarithms for one-dimensional (non-Markovian) stochastic chains (Applications of Renormalization Group Methods in Mathematical Sciences)
- A family of processes interpolating the Brownian motion and the self-avoiding process on the Sierpinski gasket and $\mathbb{R}$ (Applications of Renormalization Group Methods in Mathematical Sciences)
- 3次元Sierpinski Gasket 上の self-avoiding paths(Martingaleに関連する諸問題)
- d次元ガスケット上のself-avoiding pathのくりこみ群解析(基研研究会 確率モデルの統計力学,研究会報告)