Stokes' theorem, self-adjointness of the Laplacian and Hodge's theorem for hyperbolic 3-cone-manifolds (Hyperbolic Spaces and Discrete Groups)
スポンサーリンク
概要
著者
関連論文
- Flexible boundaries in deformations of hyperbolic 3-manifolds(Analysis of Discrete Groups)
- A LOCAL PARAMETRIZATION OF THE TEICHMULLER SPACE OF CLOSED HYPERBOLIC SURFACES, IN TERMS OF TRIANGULATIONS(Complex Analysis on Hyperbolic 3-Manifolds)
- An expression of harmonic vector fields of hyperbolic 3-cone-manifolds, in terms of the hypergeometric functions (Hyperbolic Spaces and Discrete Groups II)
- Geodesic finite automata for Artin monoids of finite type (Expansion of Combinatorial Representation Theory)
- 双曲構造の変形と常微分方程式の確定特異点の合流操作, II(双曲空間の複素解析と幾何学的研究)
- Deformations of hyperbolic structures on the figure eight knot complement and an elliptic curve associated to them (Perspectives of Hyperbolic Spaces II)
- 双曲構造の変形と常微分方程式の確定特異点の合流操作 (双曲空間に関連する研究とその展望)
- Stokes' theorem, self-adjointness of the Laplacian and Hodge's theorem for hyperbolic 3-cone-manifolds (Hyperbolic Spaces and Discrete Groups)
- A cone angle condition on strong convergence of hydperbolic 3-cone-manifolds (Hyperbolic Spaces and Related Topics II)
- Circle packing points in the Teichmuller space