走化性モデルの非線形偏微分方程式 (関数方程式の定性的理論とその現象解析への応用)
スポンサーリンク
概要
著者
関連論文
- 走化性モデルの非線形偏微分方程式 (関数方程式の定性的理論とその現象解析への応用)
- Concentration Behavior of Blow-up Solutions for a Simplified System of Chemotaxis (Variational Problems and Related Topics)
- Keller-Segel System and the Concentration Lemma(Variational Problems and Related Topics)
- Global existence of solutions to the parabolic systems of chemotaxis(Nonlinear Evolution Equations and Applications)
- BEHAVIOR OF RADIALLY SYMMETRIC SOLUTIONS OF A SYSTEM RELATED TO CHEMOTAXIS
- ある移流拡散方程式系の解の爆発(変分問題と非線型楕円型方程式)
- A parabolic-elliptic system of drift-diffusion type in $\mathbb{R}^2$ for the subcritical case (Mathematical Analysis in Fluid and Gas Dynamics)