Neumann条件下の楕円型方程式に対する非球対称解の存在 (非線形偏微分方程式の解の構造とその解析手法についての研究)
スポンサーリンク
概要
著者
関連論文
- Topics on the movement of Hot Spots for the Heat Equation with a Potential (New Developments of Functional Equations in Mathematical Analysis)
- Solutions having boundary layers to a nonlinear elliptic equation on a spherical cap (Nonlinear Evolution Equations and Mathematical Modeling)
- Decay Rates of the Derivatives of the Solutions of the Heat Equations and Related Topics(Variational Problems and Related Topics)
- Neumann条件下の楕円型方程式に対する非球対称解の存在 (非線形偏微分方程式の解の構造とその解析手法についての研究)
- Nonradial Solutions to a Linear Elliptic Equation with Symmetric Weight (Related topics on regularity of solutions to nonlinear evolution equations)
- Stationary Keller-Segel model with the linear sensitivity(Variational Problems and Related Topics)
- Global structure of Brezis-Nirenberg type equations on the unit ball(Variational Problems and Related Topics)
- $\mathbf{R}^n$上の準線形楕円型偏微分方程式について(発展方程式と非線形問題)
- Decay estimates of a nonnegative Schrodinger heat semigroup (Nonlinear evolution equations and related topics to mathematical analysis of a phenomena)
- Decay estimates of a nonnegative Schrodinger heat semigroup (Nonlinear evolution equations and related topics to mathematical analysis of a phenomena)
- $L^p$ norms of nonnegative Schrodinger heat semigroup and the large time behavior of hot spots (Stochastic Processes and Statistical Phenomena behind PDEs)