$L^2$-torsion of 3-manifolds (Recent Progress Towards the Volume Conjecture)
スポンサーリンク
概要
著者
-
高沢 光彦
東京工業大学情報理工学研究科
-
北野 晃朗
東京工業大学情報理工学研究科
-
森藤 孝之
東京大学数理科学研究科
-
北野 晃朗
創価大学工学部
-
森藤 孝之
東京農工大学工学研究院
-
北野 晃朗
東京工業大学理工学研究科
関連論文
- Bounds of minimal dilatation for pseudo-Anosovs and the magic 3-manifold (Intelligence of Low-dimensional Topology)
- ロホリン不変量から定まるトレリ群のコホモロジー類について (双曲空間に関連する研究とその展望II)
- $L^2$-TORSION OF A SURFACE BUNDLE OVER $S^1$ (Perspectives of Hyperbolic Spaces)
- $L^2$- TORSION OF A SURFACE BUNDLE OVER $S^1$ AND A HYPERBOLIC VOLUME(II) (Hyperbolic Spaces and Discrete Groups II)
- $L^2$-torsion of a surface bundle over $S^1$ and a hyperbolic volume (Hyperbolic Spaces and Discrete Groups)
- $L^2$-torsion of 3-manifolds (Recent Progress Towards the Volume Conjecture)
- A NOTE ON DEGREES OF TWISTED ALEXANDER POLYNOMIALS (Twisted topological invariants and topology of low-dimensional manifolds)
- TWISTED ALEXANDER POLYNOMIALS AND CHARACTER VARIETIES FOR 2-BRIDGE KNOTS (Twisted topological invariants and topology of low-dimensional manifolds)
- SOME PROBLEMS ON EPIMORPHISMS BETWEEN KNOT GROUPS (Twisted topological invariants and topology of low-dimensional manifolds)
- RIMS合宿型セミナー報告集
- Reidemeister torsion, twisted Alexander polynomial and fibered knots (Perspectives of Hyperbolic Spaces)
- On $L^2$-invariants of surface bundles (Perspectives of Hyperbolic Spaces II)
- On Algebraic K-Theory, Homology Spheres and the η-Invariant〔和文〕 (Volume Conjecture and Its Related Topics)
- GEOMETRY OF MEYER'S FUNCTION (Hyperbolic Spaces and Related Topics)
- PROBLEM SESSION (Geometric and analytic approaches to representations of a group and representation spaces)
- 書評 S. Mukai: An Introduction to Invariants and Moduli(Cambridge Stud. Adv. Math., 81)
- LINEAR REPRESENTATIONS OF A KNOT GROUP OVER A FINITE RING AND ALEXANDER POLYNOMIAL AS AN OBSTRUCTION (Representation spaces, twisted topological invariants and geometric structures of 3-manifolds)
- ON THE SECOND COEFFICIENT OF THE TWISTED ALEXANDER POLYNOMIAL (Representation spaces, twisted topological invariants and geometric structures of 3-manifolds)