Infinite Matrices and Cesaro Sequence Spaces of Non-absolute Type
スポンサーリンク
概要
- 論文の詳細を見る
In the present paper we essentially deal with to determine the neccessary and sufficient conditions in order for a matrix A=(ank) to belong to the classes (Xp:bs), (Xp:fs), (X1:lp), (Xp:X1) and (lp:X1), respectively. Furthermore, we give the sufficient conditions on a matrix A=(ank) in the class (Xp:lp) for 1<p<∞ and prove a Steinhaus type theorem concerning the disjointness of the classes (Xp:fs)r and (bs:fs). Those sequence spaces are described, below.
- 茨城大学の論文
著者
-
Basar Feyzi
Inonu Universitesi
-
FEYZI BASAR
Inönü Üniversitesi, Egitim Fakültesi, Matematik Egitimi Bölümü
関連論文
- Some Matrix transformations Into the Cesaro Sequence Spaces of Non-absolute Type
- Infinite Matrices and Cesaro Sequence Spaces of Non-absolute Type
- On the fine spectrum of the Cesa`ro operator in c0