On a Variety of Minimal Surfaces Invariant under a Screw Motion
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we will prove that a certain class of branched multi-valued minimal surfaces invariant under a translation or a screw motion becomes a real analytic variety via their Weierstrass data. We also prove that the class contains complex analytic variety and give a lower bound of its dimension.
- 東京大学の論文
著者
関連論文
- 複素ユークリッド平面内のラグランジュ曲面の面積についての不等式 (部分多様体の微分幾何学およびその周辺領域の研究)
- 複素平面内のラグランジュ曲面の分数表示(部分多様体論と可積分系および幾何解析とのつながり)
- The denominators of Lagrangian surfaces in complex Euclidean plane
- Minimizing sequences for the Willmore functional and quaternions (部分多様体論のさらなる発展にむけて--RISM研究集会報告集)
- 回転対称性を持つ極小曲面のモデュライ空間 (リーマン部分多様体の総合的研究)
- Existence of algebraic minimal surfaces for an arbitrary puncture set
- Minimal annulusのモデュライ空間の全実構造について (極小曲面論とその周辺領域の総合的研究)
- A family of Weierstrass data on branched minimal surfaces in Euclidean space (Geometry of homogeneous spaces and submanifolds)
- Existence of a family of complete minimal surfaces of genus one with one end and finite total curvature
- On a Variety of Minimal Surfaces Invariant under a Screw Motion
- A Condition for a Closed One-Form to Be Exact
- A tt∗-bundle associated with a harmonic map from a Riemann surface into a sphere
- Simple factor dressing of a minimal surface (Submanifolds and Quaternion structure)
- Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry (Submanifolds and Quaternion structure)
- A space of minimal tori with one end and cyclic symmetry
- On a moduli space of minimal annuli
- On a moduli space of minimal annuli