Upper Bounds for the Eigenvalues of the Laplacian on Forms on Certain Riemannian Manifolds
スポンサーリンク
概要
- 論文の詳細を見る
We have two kinds of upper bounds of the eigenvalues of the Laplacian on forms on compact Riemannian manifolds. One is implicit in terms of the Ricci curvature and the injective radius. The other is explicit for a class of Riemannian manifolds.
- 東京大学の論文
著者
関連論文
- Occurrence of HDDR Phenomena and Grain Refinements for Al-Mg Alloys
- On the gap between the first eigenvalues of the Laplacian on functions and 1-forms
- Upper Bounds for the Eigenvalues of the Laplacian on Forms on Certain Riemannian Manifolds
- The First Eigenvalue of the Laplacian on $p$-Forms and Metric Deformations