Essential Conformal Fields in Pseudo-Riemannian Geometry. II
スポンサーリンク
概要
- 論文の詳細を見る
We study conformal vector fields on pseudo- Riemannian manifolds. In the case of conformally flat manifolds, the main tool is the conformal development map into the projective quadric. On the other hand, we show that there exists a pseudo-Riemannian manifold carrying a complete and essential vector field which is not conformally flat. The example implies that there is no finite dimensional moduli space for such manifolds. Therefore, a pseudo-Riemannian analogue of Alekseevskii's theorem on the classification of essential conformal vector fields cannot be expected.
- 東京大学の論文
著者
-
Kuhnel W
Mathematisches Institut B Universitat Stuttgart
-
Rademacher H.-B
Mathematisches Institut, Universitat Leipzig
-
Rademacher H.-b
Mathematisches Institut Universitat Leipzig