The Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we extend the results of [Tama] on the Grothendieck Conjecture for affine hyperbolic curves over finite fields to obtain a Grothendieck Conjecture-type result for singular, proper, stable log-curves over finite fields. Using this result, we derive a strong Grothendieck Conjecture-type result for smooth, proper hyperbolic curves over number fields, and a weak Grothendieck Conjecture-type result for smooth, proper, hyperbolic curves over local fields with ordinary reduction.
- 東京大学の論文
- 1996-00-00
著者
-
Mochizuki Shinichi
Research Institute For Mahematical Sciences Kyoto University
-
Mochizuki Shinichi
Research Institute For Mathematical Sciences Kyoto University
関連論文
- The Etale Theta Function and Its Frobenioid-Theoretic Manifestations
- The Geometry of Anabelioids
- Conformal and quasiconformal categorical representation of hyperbolic Riemann surfaces
- The Geometry of the Compactification of the Hurwitz Scheme
- On Semi-Positivity and Filtered Frobenius Crystals
- A combinatorial version of the Grothendieck conjecture
- Semi-graphs of Anabelioids
- A Theory of Ordinary $p$-Adic Curves
- The Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields