The Andreotti Grauert vanishing theorem for dihedrons of $\Bbb C^n$
スポンサーリンク
概要
- 論文の詳細を見る
Let $X$ be a complex manifold, $\OX$ the sheaf of analytic functions on $X$, $W$ an open set of $X$ with $C^2$-boundary $M=\partial W$ ($W$ locally on one side of $M$), $z_o$ a point of $M$, $p_o$ the exterior conormal to $W$ at $z_o\,$. If the number of negative eigenvalues for the Levi form of $M$ in a neighborhood of $p_o$ is $\geq s^-$ (resp. $\equiv s^-$), then vanishing of local cohomology groups of $\OX$ over $W$ in degree $
- 東京大学の論文
著者
関連論文
- Analytic discs in simpletic spaces
- The Andreotti Grauert vanishing theorem for dihedrons of $\Bbb C^n$
- Non smooth Lagrangian sets and estimations of micro-support
- SOLVABILITY OF THE TANGENTIAL $ \bar{ \partial }$ COMPLEX ON HYPERSURFACES WITH GENERAL LEVI SIGNATURE