Effect of DEM Parameters on the Simulated Inter-particle Percolation of Pellets into Coke during Burden Descent in the Blast Furnace
スポンサーリンク
概要
- 論文の詳細を見る
Inter-particle percolation at the interface between the burden layers in the blast furnace influences the permeability in the lumpy zone, and, in particular, in the cohesive zone, where the iron-bearing materials start softening to finally melt. This paper presents a simulation study of the effect of particle properties on inter-particle percolation of small particles (pellets) into a layer of larger particles (coke) during burden descent in the blast furnace. An expanding experimental device in small scale was applied to mimic the conditions at burden descent in a shaft with growing radius, and results from these experiments were used as a reference for the simulations and to validate the computational results. The simulations, which were based on the discrete element method, studied the effect of factors such as friction and restitution coefficients, shear modulus, as well as pellet diameter on the extent of percolating particles. It was found that coke shape, pellet diameter, static friction and inter-particle rolling friction and restitution had a marked effect on the percolation, while rate of expansion of the device, density of pellet and shear modulus proved to be of minor importance.
- 2012-05-15
著者
-
Saxen Henrik
Thermal And Flow Engineering Lab. Åbo Akademi Univ.
-
Yu Yaowei
Thermal And Flow Engineering Laboratory Department Of Chemical Engineering Abo Akademi University
-
SAXEN Henrik
Thermal and Flow Engineering Laboratory, Dept. of Chemical Engineering, Abo Akademi University
関連論文
- Mathematical Optimization of Ironmaking with Biomass as Auxiliary Reductant in the Blast Furnace
- Optimization of Top Gas Recycling Conditions under High Oxygen Enrichment in the Blast Furnace
- Multi-objective Optimization of Ironmaking in the Blast Furnace with Top Gas Recycling
- Model for Economic Optimization of Iron Production in the Blast Furnace
- A Simulation Study of Blast Furnace Hearth Drainage Using a Two-phase Flow Model of the Taphole
- Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres
- Pressure Drop in the Blast Furnace Hearth with a Sitting Deadman
- Inter-particle Percolation Segregation during Burden Descent in the Blast Furnace
- Effect of DEM Parameters on the Simulated Inter-particle Percolation of Pellets into Coke during Burden Descent in the Blast Furnace
- Optimal Resource Allocation in Integrated Steelmaking with Biomass as Auxiliary Reductant in the Blast Furnace
- Blast Furnace Dynamics Using Multiple Autoregressive Models with Exogenous Inputs