Automatic Determination of the Appropriate Number of Clusters for Multispectral Image Data
スポンサーリンク
概要
- 論文の詳細を見る
Nowadays, clustering is a popular tool for exploratory data analysis, with one technique being K-means clustering. Determining the appropriate number of clusters is a significant problem in K-means clustering because the results of the k-means technique depend on different numbers of clusters. Automatic determination of the appropriate number of clusters in a K-means clustering application is often needed in advance as an input parameter to the K-means algorithm. We propose a new method for automatic determination of the appropriate number of clusters using an extended co-occurrence matrix technique called a tri-co-occurrence matrix technique for multispectral imagery in the pre-clustering steps. The proposed method was tested using a dataset from a known number of clusters. The experimental results were compared with ground truth images and evaluated in terms of accuracy, with the numerical result of the tri-co-occurrence providing an accuracy of 84.86%. The results from the tests confirmed the effectiveness of the proposed method in finding the appropriate number of clusters and were compared with the original co-occurrence matrix technique and other algorithms.
- 2012-05-01