Boundary parametrization of self-affine tiles
スポンサーリンク
概要
- 論文の詳細を見る
A standard way to parametrize the boundary of a connected fractal tile T is proposed. The parametrization is Hölder continuous from R/Z to ∂T and fixed points of ∂T have algebraic preimages. A class of planar tiles is studied in detail as sample cases and a relation with the recurrent set method by Dekking is discussed. When the tile T is a topological disk, this parametrization is a bi-Hölder homeomorphism.
- 社団法人 日本数学会の論文
- 2011-04-01
著者
-
Loridant Benoît
Montanuniversität Leoben, Lehrstuhl für Mathematik und Statistik
-
Akiyama Shigeki
Department Of Mathematical Science Graduate School Of Science And Technbology Niigata University
-
Loridant Benoit
Montanuniversitat Leoben Lehrstuhl Fur Mathematik Und Statistik
関連論文
- The Selberg trace formula for modular correspondences
- Boundary parametrization of self-affine tiles
- Recursively renewable words and coding of irrational rotations
- On the boundary of self affine tilings generated by Pisot numbers
- Boundary parametrization of self-affine tiles
- From number systems to shift radix systems